Multi-Objective Ant Colony Optimization Based on the Physarum-Inspired Mathematical Model for Bi-Objective Traveling Salesman Problems.
نویسندگان
چکیده
Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs.
منابع مشابه
A Non-dominated Sorting Ant Colony Optimization Algorithm Approach to the Bi-objective Multi-vehicle Allocation of Customers to Distribution Centers
Distribution centers (DCs) play important role in maintaining the uninterrupted flow of goods and materials between the manufacturers and their customers.This paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. An evolutionary algorithm named non-dominated sorting ant colony optimization (NSACO) is used as the optimi...
متن کاملAn Empirical Analysis of Multiple Objective Ant Colony Optimization Algorithms for the Bi-criteria TSP
The difficulty to solve multiple objective combinatorial optimization problems with traditional techniques has urged researchers to look for alternative, better performing approaches for them. Recently, several algorithms have been proposed which are based on the Ant Colony Optimization metaheuristic. In this contribution, the existing algorithms of this kind are reviewed and experimentally tes...
متن کاملA taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP
The difficulty to solve multiple objective combinatorial optimization problems with traditional techniques has urged researchers to look for alternative, better performing approaches for them. Recently, several algorithms have been proposed which are based on the Ant Colony Optimization metaheuristic. In this contribution, the existing algorithms of this kind are reviewed and a proposal of a ta...
متن کاملMulti-objective ant colony optimization based on decomposition for bi-objective traveling salesman problems
This paper proposes a framework named multiobjective ant colony optimization based on decomposition (MoACO/D) to solve bi-objective traveling salesman problems (bTSPs). In the framework, a bTSP is first decomposed into a number of scalar optimization subproblems using Tchebycheff approach. To suit for decomposition, an ant colony is divided into many subcolonies in an overlapped manner, each of...
متن کاملExtending ACOR to Solve Multi-Objective Problems
Ant Colony Optimization (ACO) was first proposed to solve the Traveling Salesman Problem, and later applied to solve more problems of a combinatorial nature. Some research based on ACO to tackle continuous problems has been published, but this has not followed the original ACO metaheuristic exactly. Recently, ACOR has been proposed to solve continuous function optimization problems. We have tak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PloS one
دوره 11 1 شماره
صفحات -
تاریخ انتشار 2016